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Thermodynamics is one of the factors which control the orientation distribution of polymer crystals. 
The present paper deals with crystal orientation in uncrosslinked polymer systems, in which small, 
isolated crystals are embedded in a viscous matrix. With transient effects neglected, and in the absence 
of the production of new crystals, orientation is controlled by the orientation-dependent free energy 
of an anisotropic crystal, F(0), and a hydrodynamic potential of the velocity field, qb (0). Example 
distributions for uniaxially stressed polyethylene are discussed. It has been shown that different 
mechanisms control crystal orientation depending on the stress difference Ap --P33 - P l l  applied, and 
the crystal shape factor, ~b. At  low stresses, Ap and high assymetry factors, ~b, crystal orientation is 
practically controlled by the hydrodynamic po~ntial. At  high stresses and/or low asymmetry ratios 
it is the strain energy of anisotropic crystals, F(0), which is responsible for orientation distribution. In 
the intermediate range both mechanisms have to be considered. 

INTRODUCTION 

It is well known that physical and mechanical properties of 
crystalline polymers depend not only on the degree of trans- 
formation but also on the orientation of crystals developed 
during the formation and processing of the product. The 
orientation of crystals embedded in a stressed amorphous 
matrix can be controlled by four independent mechanisms: 
hydrodynamic, kinetic, diffusional and thermodynamic 1'2. 
One of these possibilities is thermodynamically controlled 
orientation resulting from the orientation-dependent free 
energy of crystals embedded in a stressed amorphous matrix. 

The stress in the matrix arises from deformation and 
orientation of polymer macromolecules induced by external 
forces. The stress leads to deformation of crystals. The de- 
formation and free energy of such a crystal both depend on 
the orientation of the crystal with respect to the stress field. 

In the case of zero nucleation rate (no crystallization) we 
can consider combined thermodynamic and hydrodynamic 
effects of orientation. The continuity equation for the angu- 
lar distribution function of crystallities, xI,(~), reduces to the 
homogeneous form"2: 

~kO/Ot - divo(~Dgrad o [F(~/kT  + ln~] + q~O O} = 0 (1) 

where t is time, 0is a vector composed of three Euler angles 
describing orientation of the crystal, Dis a rotational diffusion 
tensor and F(O) is the orientation-dependent free energy. Op- 
erators grado and divo are defined in the Riemannian space. ~0 
is the hydrodynamic (convected) rotation velocity. 

Generally, free energy, F(0), can be expressed as a sum 
of the orientation-dependent free energy of the crystal, 
Fcr( ~ and the free energy of amorphous surroundings, 
F~m(O): 

F(O) = Fcr(O ) + Fam(O ) (2) 

Absence of the crystal-crystal interaction has been assumed 
here. If  the free energy of amorphous surroundings, Faro , 
does not depend on crystal orientation, as is the case with 
crystals in an uncrosslinked polymer, then the orientation 
is controlled by the orientation-dependent free energy of 
the crystal, Fcr(O ), in the absence of a hydrodynamic field. 
The steady-state solution (Oeg/at = 0) of the orientation 
equation (1) can thus be written in the form: 

• ~th(0) = Cexp [-Fcr(O)/kT ] (3) 

where C is a normalization constant. 
The dependence of crystal free energy, Fcr o n  its orienta- 

tion 0 is derived in the present paper. The stress field in the 
matrix has been determined assuming an affine deformation 
of polymer chain macromolecules. Example computations 
have been performed for polyethylene crystals in uniaxially 
stressed systems and distribution of crystal orientation has 
been calculated from equation (3). 

Another source of an orientation-dependent potential is 
a hydrodynamic field in the viscous medium under steady- 
state flow. If the velocity field in the medium is potential, 
the corresponding potential, q~(0), which determines the 
velocity 2 0 in the orientation equation (equation 1) contri- 
butes to steady-state crystal orientation distribution in the 
same way as does strain energy of an isolated crystal, Fcr(O ). 

MODEL ASSUMPTIONS 

A system containing a number of crystallites embedded in 
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an amorphous matrix is considered. The crystallites are 
much smaller than the macroscopic dimensions of the system, 
but much larger than kinetic elements of the amorphous 
phase (statistical chain segments). Consequently, the amor- 
phous matrix can be considered as a continuum surrounding 
small crystalline inclusions. 

On the molecular level the amorphous matrix may exist 
as a network of chains connected by crosslinks, or it can be 
a system of free, uncrosslinked chain molecules (polymer 
solutions, melts). An uncrosslinked amorphous phase 
(polymer solutions or melts) behaves as a viscous liquid. In 
such a case deformation of macromolecules may result from 
friction with solvent molecules (diluted solutions) and/or 
contact friction with surrounding chains (concentrated solu- 
tions, melts) during flow. 

As a result of molecular deformation, an elastic force f, 
directed along the end-to-end vector h, arises between th~ 
ends of the macromolecule. This force is responsible for 
the 'local' stress p in the vicinity of the chain3: 

P(h ) = vfh -.po_I (4) 

where o is number of chains in unit volume of the amorphous 
phase, P0 is the ambient pressure and / i s  the unit tensor. 
The elastic force/ is  defined as: 

O h,73 h (5) 
Oh h 

where ~ s  the free energy of the chain macromolecule and 
T is the absolute temperature. 

For a Gaussian chain with neglected intramolecular inter- 
actions the elastic force can be expressed as a linear function 
of the end-to-end vector4: 

k T  
f (h )  = 3 ~  h (6) 

where the statistical parameter (h 2) is mean square end-to- 
end distance of a free chain. 

In the case of non-Gaussian chains (Kuhn-Grfin distribu- 
tion) with intramolecular interactions, in the rotational iso- 
meric approximation the expression for elastic force assumes 
the formS: 

f (h)  = (kT/(h2)) Ai(eoh2/(h~)) i -  h 

L 1 

(7) 

In the above formula the parameter (h 2) is a limiting value 
of the mean square end-to-end distance for a chain consist- 
ing of freely jointed segments of length ao: 

(h~) = lao, a0 = lira a(h,l) (8) 
h-*O 
l--~o 

where a is the length of the statistical se~nent of a deformed 
chain (h =~ 0) with contour length l. 

Coefficients Ai in equation (7) are: 

Ai = ~ Aiie/o- i (9) 

]=i  

where the parameter e 0 is a reciprocal number of statistical 
chain segments N O 

e 0 =N~ -1 = ao/l (10a) 

The coefficients A o derived for the case of chains of chains 
consisting of three types of isomers (trans, gauche- 1, 
gauche-2) read s : 

Al l  =3 (10b) 

A 12 = 3 sinZ(a/2)(1 - cos fl)(1 + 2w)2/[ 1 + (1 + cos fl)w] 3 
(10c) 

A22 = 9(1/5 -A12/6)/2 (lOd) 

t~ denotes the valence angle, and/3 is the rotation angle for 
the gauche isomer measured from the position of the trans 
isomer. It was assumed, that the rotational potential is 
symmetric with respect to the trans isomer. Then 

w = e x p ( - A E / k T )  (10e) 

where AE is the difference in energy between gauche (Eg) 
and trans (Et) isomers 

AE = Eg - E t (lOf) 

The stress tensor at any point in the amorphous matrix is 
the average of the 'local' stress tensor p with respect to the 
actual distribution of end-to-end vectors, W(h): 

~)  = fffp(h)W(h)dh (11) 

Assuming affine deformation of end-to-end vectors h, the 
stress tensor (p) can be written in the form: 

(det~ I')~A°kr rAl_5_ <hg>2<h4*> a] 9 ) - [ ( - ~ r  + (2r2 + ~ rDe0  + . . -  - P ~  

(12) 

where P is the molecular deformation tensor 

r = A6 r (13) 

and A is the displacement gradient tensor. (h. 2n) (n = 1,2, 3) 
are average values for an undeformed system of real chains 
(networks, melts, solutions), i.e. one in which P =/ .  

Stresses in the amorphous matrix induce deformation of 
crystallites embedded in the matrix. This deformation is 
much smaller than the deformation of the matrix itself due 
to crystal moduli which are three or four orders of magni- 
tude higher than those for an amorphous material. Despite 
their morphology, in the range of stresses discussed, the 
crystallites can be considered as uniform bodies, exhibiting 
anisotropic, linear elasticity. This is true even when non- 
linear deformations of the amorphous matrix are involved. 

To formulate the boundary conditions, it is assumed that 
on the surface of each inclusion (crystal) acts a uniform 
stress field, a, the same as in the amorphous phase without 
any crystallites. 

g(0X) = (io) = constant (14) 

where 0X denotes the boundary of the crystallite. In fact, 
the presence of crystals perturbs the uniformity of the stress 
field in the matrix. These perturbations, however, can be 
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neglected when crystals are not too numerous and small as 
compared with the macroscopic dimensions of the whole 
sample. 

DEFORMATION ENERGY OF A UNIFORM, ANISOTROPIC 
BODY 

Stress (o) and strain (.() fields within a crystalline body with 
boundary conditions given by equation (14) can be deter- 
mined from the equations of the theory of elasticity. Three 
equations of equilibrium, with neglected inertia read: 

oil,~ = 0 (for i,j = 1,2,3) (15) 

and the continuity equations: 

eiLkt + ekt, i/ - eik,il - efl, ik = 0 (16) 

where oii, eli are components of the stress and strain tensors 
respectively, expressed in an external, Cartesian coordinate 
system. 

We can treat the polymer crystal embedded in a stressed 
amorphous matrix as a body which obeys Hooke's Law, and 
assume the linear constitutive equation 

e =b~: a (17) 

valid for any point in the body. The fourth-valence com- 
pliance tensor~;Z~is given in the same coordinate system as 
the stress tensor, and is constant in the whole volume of the 
body. 

It can be found that the solution of equations (14)-(17) 
is a uniform stress field within the body considered, equal 
to the stress in the amorphous surroundings: 

o(X) = E(OX) = <p> (18) 

Notice, however, that the assumptions of affine molecular de- 
formation in the matrix and uniform deformation of the in- 
clusion are incompatible with the continuity conditions of 
deformation on the boundary between the body and the 
amorphous matrix. 

In the case of an isothermal and quasistatic deformation, 
one can calculate the free energy for a linearly elastic body, 
using the formula: 

F =  V f o : d £  = Vtr(e.o)/2 (19) 

where V is volume of the body. 
Based on the solution, equation (15), one can use Hooke's 

law, equation (17) to obtain 

e =Y:~p> (20) 

Hence 

F =  Vtr [(~,'~(p) (p)] (21) 

Usually, components of the compliance tensor Y a r e  expres- 
sed in the system of crystal main axes, so it is more conve- 
nient to write equation (21) in the same system. Each crys- 
tallite has different orientation with respect to the external 
coordinate system in which the stress tensor <p) was defined. 
Therefore, equation (2 I) should be applied se"parately to 
each body (crystal) by means of appropriate transformations 

to the system of main axes. 
Let the main axes of the crystal form Eulerian angles 

0 = (0,¢,~) with respect to the external coordinate system. 
The stress tensor (p) under those conditions assumes the 
form: 

<B> -+~(e)~>~ T(0) 

w h e r e ~ i s  the appropriate rotation tensor. 
With this result, the free energy can be written as: 

(22) 

F(O) = (V/2) tr{ [ y : ( ~ ( p ) ~ T ) ]  ~ ( p L ~ ?  T} (23) 

The free energy dependence on the orientation of the 
body embedded in the stressed continuum is therefore de- 
termined by the dependence of the rotation t e n s o r ~ o n  
the Eulerian angles. Knowing components of the tensor Y 
from experimental studies 6 and the stress tensor (p) in the 
amorphous matrix, one can calculate the free energy of a 
crystal oriented at 0. The stress tensor (p) can be measured 
or expressed in terms of the (affine) deformation of amor- 
phous chains P. Applying equation (12) to the calculation 
of free energy, one obtains: 

F = F(0,F) (24) 

DEFORMATION OF A BODY WITH UNIAXIAL 
SYMMETRY 

Orientation of a uniform, linear, uniaxially symmetric body 
is completely described by two angles 0 and ¢ (Figure 1). 
The strain e for such a body can be written in the form: 

e = K1(trff)/+ K2£ + K3 (rTor)/+ XAK4 [(tro)rjT + (rTo~)I] 

+ ~K5 [r(or) r + o r  r r] (25) 

where K i (i = 1, 2 . . . .  5) are elasticity constants and r is the 
unit vector of the symmetry axis. In the matrix notation 
(ref 7) the compliance tensor - ~ s  represented by a 6 x 6 
square matrix si/. For a uniaxially symmetric body the 
matrix is determined by five independent material constants: 

Z 

., y 

Figure I Crystal with rotational symmetry oriented at 0,9 in an 
external coordinate system, r is a unit  vector of the symmetry axis 
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I Sll s12 s13 0 0 0 1 
• Sll s13 0 0 0 

sij = S33 0 0 0 (26) 
s44 0 0 

s44 0 
2(Sll -S13) 

Comparison of the Hooke's law written in matrix and tensor 
forms leads to the following expressions for the elasticity 
constants: 

K 1 = s12 (27a) 

K2 = Sll - s12 (27b) 

K 3 = Sll - s33 - 2s13 - s44 (27c) 

K 4 = 2(s13 - s12 ) (27d) 

K 5 = 2s12 - 2Sll + s44 (27e) 

Substitution of the stress tensor, equation (18), into equa- 
tion (25) yields the free energy of a uniform, uniaxially 
symmetric crystallite with symmetry axis oriented at angles 
0 and q~. 

F(O,dp) = (V[2){K 1 (try)) 2 + K 2 try) 2 + K 3 [tr(rrT~))] 2 + 

K4(tr~)tr(rjT~)) + KstrffrT~)2)} (28) 

In deriving equation (28) it was taken into account that, 
generally: 

tr(~T(e)) = rT~)r, ~>T= ~>, 

tr(rrT~) 2) = tr(~rT~)) (29) 

Expression (28) for the free energy reduces to simpler form 
when the stress tensor ~) also has an uniaxial symmetry: 

[ p a l  0 0 ] 
~> = o p ~  o (30)  

0 0 P33 
In the latter case the free energy of the body depends only 
on the single angle 0. 

F(O)/V= b 0 + blcos20 + b2cos40 (31) 

Constants b i depend on the compliance constants of the 
body and on the components of the stress tensor (p). 

2b 0 = (Kltr(p) + K4P11)tr(e) + K2tr~p) 2 + (K 3 + Ks)P~l(32a) 

bl = (/o33 - Pll)[(K4 +Ks)P33/2 + (K3 +K4 + KS[2)P11] 
(32b) 

b2 = K3(P33 - P 11)2/2 (32c) 
Consequently, thermodynamically controlled angular dis- 
tribution of uniaxial crystals in the uniform, uniaxially sym- 
metric stress field can be described as: 

~th (0a = Cexp [ - A  th (COS 20 + B COS 4 0)] 
s t  ~./ 

(33) 

where 

Ath = b 1V/kT, B = b2/b I (34) 

ORIENTATION OF ELLIPSOIDS IN A POTENTIAL 
HYDRODYNAMIC FIELD 

We will compare the effects of thermodynamic orientation 
controlled by strain energy of crystals with an orientation 
of rotational ellipsoids governed by a hydrodynamic 
mechanism. The classical linear theory of suspensions of 
ellipsoids in a viscous medium a-~° leads, for rotational ellip- 
soids, to the following orientation equation: 

3xI'/Ot + divr [xI'Rk 0 + D grad ~]  = 0 (35) 

where ~0 is the hydrodynamic (convected) rotation velocity 
expressed in the fixed coordinate system, and r is a unit 
vector defining orientation of the symmetry axis of the 
ellipsoid (Figure 2). The constant R characterizes the shape 
of the ellipsoid: 

R = (,,,2 _ I)/(,; 2 + 1) (36) 

and : = a/b is the axial ratio. D is the diffusion constant of 
the ellipsoid given by Debye formula: 

D = k T Z  (?)/V(~) (37) 

r/is the viscosity of the medium, and Z(f) is a shape 
function: 

t 2 [ 2,~ 2 - 1 

z( : )  = ;,(74_ 1) 2:(:2 l) 1/2 
: +  ( t  2 - 1)'~ ] 

In 1] for f > 1 
?_ (?2_ 1)'/2 

• -1  for? < 1 Z(/0 = 4(,~4 1 ~ [ / (~-~ --- ~ ~1/2 arc tan / 

(38) 

If the flow of the medium is characterized by a symmetric 
velocity gradient (L = LT), then the steady-state, hydro- 
dynamically controlled orientation distribution of vectors 
r, can be described by: 

.hfdro (r) = Cexp [R~,(r)m] (39) 

z 

Figure 2 Rotat iona l  ellipsoid oriented at O,q~ in an external  co- 
ordinate system, r is a un i t  vector of the symmet ry  axis; a and b are 
axes o f  the ellipsoid 
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The factor A, - is positive for ellipsoids characterized nyaro 
by / > 1 (rods) under extensional stress (Ap > 0), or for 
discs (?  < i) under compression (Ap < 0), and negative for 
rods under compression or discs under extension. 

Combination of the thermodynamic and hydrodynamic 
mechanisms leads to steady-state distribution q'st dependent 
on the crystal free energy F(O) and the potential qbQ0): 

~Itth, hvdr°(o ) = Cexp [-F(O )/k T + R~(O)/D] (45) 
S t  " ~ ~ 

The hydrodynamic term kTRcb(O)/D which appears in 
the equation (45) plays the role of an additional free energy, 
submitted in steady-state flow by viscous interaction of the 
potential hydrodynamic field with suspended asymmetric 
particles (crystals). The hydrodynamic contribution disap- 
pears when particles are spherically symmetrical (R = 0) or 
flow potential is zero (¢> = 0), or viscous forces approach 
zero (D --* oo). 

' 2'o ' 4 b  ' 6 ' 0 '  
Orientation ongl¢, 0 (degrees} 

Figure 3 Thermodynamic orientation distributions, ~(0), of poly- 
ethylene crystal c-axis under uniaxial stress field, calculated (eque- 
tion 331 for normal stress differences: A, IApl = 109; B, lZkol = I0~; 
C, I ~ I  = 108 dynelcm 2 

EXAMPLE CALCULATIONS FOR POLYETHYLENE 

Taking into account the elasticity constants estimated for 
polyethylene crystals by Stachurski and Ward 6, the stress- 
dependent parameters bl and b2 (equation 32b and 32c) 
are: 

b 1 = (31.8 z2xp - 0.1 P l l )Ap  x 10-10cm2/dyne (46a) 

b 2 = -32.4(Ap)  2 x 10-10cm2/dyne (46b) 

In the case when IAPI/IPlll >> 3 × 10 -3, the parameter bl 
can be approximated by: 

bl ~ 31.8 (Ap)2 × 10-10cm2/dyne (47) 

where ~ ( 0  is the potential of the velocity field and 

= ~ ( v ¢ ) r  (40) 

For suspensions of rotational ellipsoids subjected to uni- 
axial elongational flow (along z-axis) the distribution density 
function, ~hs{dr° , reduces to the function of the single angle 
0 (Figure 2). Then the potential * for an uncompressible 
fluid is: 

qb(0) = q* [1 - (3/2)sin 2/~] [2 (41) 

where q * is the longitudinal velocity gradient. 
In the case of a Newtonian fluid, which is characterized 

by the linear constitutive equation: 

e + p0I = 2r/L (42) 

the steady-state hydrodynamic distribution, ~]:dro of ellip- 
soids for the uniaxial elongation flow of fluid is controlled 
by the difference of normal stress components Ap = P33 
Pl 1, and reads: 

~hstYdr° (0) = C exp(Ahydr o cos 20) (43) 

where the dimensionless factor Ahydr o is proportional to the 
stress difference Ap: 

Ahydr o = ¢(p) V Ap/kT (44) 

In the problems concerning crystal orientation, the difference 
of normal stresses, Ap, usually is high enough for the above 
condition to be fulfilled. Then the dimensionless factor Ath 
appearing in the thermodynamic distribution function qtth st 
(equation 33) reduces to: 

Ath = 7(Ap) 2 V/kT (48) 

where, for polyethylene, 7 = 31.8 x 10-10 cm2/dyne. The 
second coefficient in the distribution (equation 33), for 
polyethylene crystals amounts to: 

B = 1.019 

We have assumed for our calculations that V/kT = 7.83 x 
10 -7 cm2/dyne for both thermodynamic (equation 33) and 
hydrodynamic (equation 43) distributions and an axial ratio 
of rotational ellipsoids, / = 2. Example orientation distribu- 
tions q/(0) computed with various stresses Ap, are shown in 
Figures 3 and 4 for isolated thermodynamic and hydrody- 
namic mechanisms. At low stresses, Ap = 107 dyne/era 2, 
the separated thermodynamic effect is very weak and leads 
to almost uniform angular distribution, whereas the hydro- 
dynamic effect is much stronger and practically controls the 
orientation. At higher stresses, Ap = 108 dyne/cm 2, we ob- 
serve strong differences between orientation distributions 
related to separated thermodynamic and hydrodynamic 
effects. The difference concerns not only the width of the 
distribution but also its symmetry. The hydrodynamically- 
controlled distribution exhibits a single maximum at 0 = 0 ° 

and Ca(l) = R(2)/14z( :)] 
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I ; i  iO 3 (cos20) = x2exp[--Ath(1 + Bx2)x 2] exp[-  Ath(1 + 

-1 -1 

E 
r -  

e.- 

0 

r~  

t_  

o 

102 

' ° I  

IO- 

10-2 

Bx2)x 2] dx (52) 

The numerically determined dependence of the 
thermodynamically-controlled axial orientation factor fotr/r/] 
vs. parameter Ath for polyethylene is shown in Figure 5. 
For not too high stresses satisfying the condition: 

IApl < l l(kT/V"y) V2 (53) 

the orientation factor f th assumes negative values (predomi- 
nantly perpendicular orientation of  c-axes). The dependence 
in Figure 5 does not predict, however, an ideal perpendicular 
orientation (for = -0 .5 )  and the minimum value of f t~  does not 
exceed --0.25. Positive values of the orientation factor (pre- 
dominantly parallel orientation) appear for stresses higher 
than the critical value indicated in equation (53). 

Stresses in the range: 

IApl > 20(kT/~/V) y` (54)  

'o-3kl_A  
O 2 0  4 0  6 0  8 0  

Or ientat ion angle, 0 (degrees) 

Figure 4 Hydrodynamic orientation distributions, qt(o), of rota- 
tional ellipsoids with axial ratio f l = 2 suspended in a viscous, 
Newtonian fluid under an uniaxial f low field. The distributions are 
calculated (equation 43) for normal stress differences: A, I~Pl = 107, 
B, IApl = 108;C, IApl = 109 dyne/cm 2 

and a single minimum at 0 = 90 °, while in the thermodyna- 
mic distribution two maxima can be observed: one at 0 = 0 ° 
(c-axis parallel to the symmetry axis of the stress field), 
another maximum at 0 = 90 ° (c-axis perpendicular), and one 
minimum at 0 = 45.53 °. At very high stresses, Ap = 109dyne/ 
cm 2, the maximum at 0 = 90 ° practically disappears, while 
that at O = 0 ° becomes higher and sharper. For very high 
stresses the thermodynamic factors affect orientation strong- 
er than hydrodynamic ones. 

The combined thermodynamic and hydrodynamic steady- 
state orientation of rotational anisotropic ellipsoids with sym- 
metry axis identical with the crystallographic c-axis of the 
polyethylene crystal can be described by: 

xpth,hydro(o) = C exp [ Ap( V/k T) cos20 (4 - 2cAp - 7BApcos20)] 

(50) 

The magnitude of crystal orientation can be discussed in 
terms of an axial orientation factor, i.e. the second moment 
of the distribution function which for the symmetry axis of 
a rotationally symmetric crystals is defined by: 

fb,- = (3 (cos20) - 1 )/2 (51) 

where (cos20} is the square cosine averaged with the actual 
orientation distribution function, 'I/. For the 
themlodynamically-controlled orientation, equation (33), 
it is: 

lead to practically complete parallel orientation of c-axes 
with respect to symmetry axis of  the stress field, th 1). 

There is also shown in Figure 6 a similar master relation 
for the orientation factor, resulting from hydrodynamic 

I ' 0  

~o~ 0 '8  

F O6 

~ 0 4  

~ 0.2 

o 

- 0 2  
O 

-0 "4  

o ' i ' ' ' 
Orientat ion distr ibut ion parameter, AthxlO -2 

th Figure 5 Master relation of axial orientation factor, for, of poly- 
ethylene crystal c-axis, calculated with thermodynamic distribution 
(equation 33) vs. dimensionless parameter Ath 

0"8 

~ o.6 L- 
0 

0 4  

,- 0"2 
O 

9 0 
c 

0"2 "E 
O 

0 4  

Figure G 

Disc 

-2'o - ib  8 b do  
Orientat ion distr ibut ion parameter, Ahydr o 

Master relation of axial orientation factor, f~oYr drO of rota- 
tional ellipsoids calculated with hydrodynamic distr ibution (equation 
42) vs. dimensionless parameter Ahydr o 
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" "~ - . . .~ .  Anisotropic spheres / ~  

% 

N 

OI 0 2  0 5  IO 2 5 10 
Axiol rat io (Q/b) 

Figure 7 Diagram of anisotropic ellipsoids behaviour under uniaxial, 
hydrodynamic field 

mechanism, fhoYrdr°: 

fhrYdro = 3{1/W(A~/2 " _ A - 1  2 1/2 hydro) hyt~ro]/(4Ahydro)  -- 1/2 

for ? > I (rods) 

fhoYrdr° = - 3 { 2  exp(Ahydro)/[lrY2erf(L4hydro 11/2)] 

_lAhydro l -1 /2} / (4 lAhydro l l /2 )  f o r / <  1 (discs) (55) 

where the functions W(-) and erf(-) are defined as follows: 

x 

W ( x  ) = exp ( -  x 2) j exp(t 2)d t (56) 

0 
x 

erf(x) = 2/(7r) '/~ j - e x p ( - t 2 ) d t  (57) 

0 

The orientation factor of the rotational ellipsoids subjected 
to a uniaxial hydrodynamic field is always positive for Ahydr o 
> 0 (rods in compressive field or discs under extension), and 
converges to unity when Ahydro -+ + oo. The orientation 
factor is always negative for Ahydr o < 0 (rods in extensional 
field or discs under compression) and converges to -0 .5  
when Ahydr o ~ -- oo 

CONCLUSIONS 
In the absence of production of  new crystals, orientation 
distribution is controlled by thermodynamic and hydrody- 
namic factors. The thermodynamic contribution results 
from an orientation-dependent free energy of a single crystal, 
F ~ ) .  When no other external fields are present, F ~ )  can 
result from orientation-dependent strain of  anisotropically 
elastic particles embedded in a continuum with a homoge- 
neous stress field. The hydrodynamic contribution results 
from viscous interactions between asymmetric particles sus- 
pended in the medium subjected to a potential flow. 

The isolated thermodynamic and hydrodynamic orienta- 
tion effects differ in many respects one from another. In the 
first approximation, the strain energy is a quadratic function 
of stress, while the hydrodynamic potential is a linear 
function of  stress components. Therefore, strain energy 
controls orientation at high stresses, while low stresses favour 

the hydrodynamic effect. In the calculations performed for 
polyethylene crystals in an extensional flow field both F(0) 
and ~(0) have been found to be approximately dependent on 
the single stress difference. Ap = P33 - P l 1. The fact that 
F(0) is approximately proportional to (Ap)2 while the hy- 
drodynamic potential is a linear function of  the stress diffe- 
rence Ap multiplied by the shape factor, 4, shows that the 
thermodynamic orientation is invariant to the replacement 
of extension by compression and vice versa. Hydrodynamic 
orientation changes orientation axis when Ap is replaced by 
(--Ap) or ¢ by ( 4 ) .  

The other difference concerns the symmetry of the orien- 
tation distribution functions. For uniaxially stressed poly- 
ethylene, the thermodynamically-controlled orientation func- 
tion exhibits two maxima (at 0 = 0 ° and 0 = 90 °) and a single 
minimum (at 0 = 45.53 °) while the hydrodynamic functions 
show a single maximum at 0 ° or 90 °, and a single minimum 
at 0 = 90 ° or 0 ° dependent on the sign of the product 
(Ap-¢) .  The hydrodynamic orientation is strongly depen- 
dent on the shape factor 4, and reduces to zero when spheri- 
cally symmetric particles are considered. No effect of  shape 
is encountered in the thermodynamic orientation. 

Figure 7 presents the conditions when the thermodynamic 
and the hydrodynamic effects on crystal orientation become 
comparable, i.e. when the average free energy (F(0)) is equal 
to the average hydrodynamic potential (kTd)(O)/D). The 
results for polyethylene subjected to uniaxial stress field are 
plotted in the space of  stress differences, Ap and axial ratios, 
?. 

Solid lines correspond to the condition: <F(0)) = 
= (kYdo(O)}/D. The cross-hatched areas describe transition 
regions where both mechanisms effectively codetermine the 
resulting orientation. Far enough from these regions orien- 
tation can be approximated by the isolated mechanisms: 
thermodynamical or hydrodynamical. The first one is effec- 
tive in the range of  hif, h absolute stress differences IApl and/ 
or small asymmetry of particles (axial ratio / close to unity); 
the orientation is controlled by crystal strain energy alone 
and the crystals behave like anisotropic spheres. On the 
other hand, at small stresses and/or hi,h degree of asymmetry 
( ? ' ~  1/or,~ >> 1), the hydrodynamic mechanism is the one 
controlling orientation, and the crystals behave like isotropic, 
asymmetric particles. 
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